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ABSTRACT

The troubles with small degrees of variance explained by noise exposure in noise
annoyance surveys was recognized long ago. Typically, in bivariate models, not
more than about 10-20 percent of the variation of individual annoyance ratings can
be explained by (usually Leq-based) exposure measures. This paper aims at taking
inventory of the level of achieved explained variance of the exposure-annoyance re-
lationships as derived from original datasets from a handful of recent noise annoy-
ance surveys. The probability distributions of R-squared are estimated from subsam-
ples of the original survey data by applying a simple and straightforward bootstrap
approach. Results from this exercise revealed that explained variance of bivariate
exposure-effect models amounts to not more than R-squared values between 0.05
and 0.25, if individual responses are used. The further analysis aimed at elucidating
whether R-squared is associated with the noise source, type of survey (postal ques-
tionnaire, telephone interview, face-to-face), or the characteristics of the annoyance
scale that was used to measure annoyance responses.

INTRODUCTION

In the August 2011 issue of the Journal of the Acoustical Society of America, Meyer
expressed his concern, that current noise annoyance research applies rather lenient
criteria regarding the required level of explained variance in exposure-effect models
that aim at informing policy decisions, particularly, in the scope of defining exposure
limit values (Meyer, 2011). As pertinent information is missing about what can practi-
cally be expected in an empirical noise annoyance survey in terms of explained vari-
ance, the present exercise aimed at taking inventory of the level of R-squared of the
exposure-annoyance relationships as derived from a handful of datasets of recent
noise annoyance surveys.

R-squared in the context of socio-acoustic surveys

In their reviews on the role of nonacoustical variables, both Fields (1993) and
Job(1988), mostly considering studies from the 70ies and 80ies, came to the conclu-
sion, that noise exposure measures typically explain not more than about 20 percent
of the individual variation of annoyance. In the linear regression context, explained
variance is usually expressed in the R-squared statistic, i.e. the squared correlation
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between observed and predicted values in a given sample. R-squared is a common
goodness of fit measure and can take values between 0 and 1. Job in 1988 con-
cluded from his review (Job, 1988) of 39 empirical studies of noise annoyance, that
the average R-squared between noise exposure and noise annoyance for group data
is 0.67 and for individual data 0.18, which is - given common standards - very low.

In the statistical model building process, high values of R-squared are desired, as R-
squared is a relatively straightforward estimate of how good the model will predict the
level of the dependent variable at different levels of the independent variable, in other
terms: how good the exposure to noise predicts annoyance or other effects that are
in the focus of a particular study. For studies into exposure-annoyance relationships
of noise, the achieved levels of R-squared are of practical concern for most re-
searchers (and policy makers alike) – the lower R-squared turns out, the higher the
risk of coincidental and, therefore, unjustified conclusions.

R-squared usually grows with the adjunction of predictors, and accounting for more
that just exposure measures (e.g. Leq) as predictors, will almost certainly result in
better predictions. However, in socio-acoustic annoyance studies the researcher
usually tries to explain as much of the variance of annoyance by characteristics of
the exposure alone. As political demands in the context of noise regulation call for
parsimony, the "choice" of usable predictor variables is often restricted to those that
refer to acoustical properties of a noise source. This can be illustrated as follows: It is
well known fact, that e.g. house owners show greater noise annoyance than renters,
and that noise-sensitive persons are more easily annoyed by a given level of expo-
sure than the insensitives. While any multivariate model that, in addition to the expo-
sure, accounts for such predictors, will enhance our understanding of the genesis of
annoyance reactions and certainly reduce the fraction of unexplained variance, it is
difficult to use these predictors in forecasts, e.g. in environmental impact assess-
ments. This is simply the case because most usually, exposure measures are avail-
able on the level of spatial grid points, whereas data on the level of individuals are
not. Thus, policy makers usually demand estimates of effects that rely on measured
or calculated exposure alone.

The level of achievable explained variance in a socio-acoustic survey is depending
on various factors: It is a general property of regression, that model fit characteristics
are strongly determined by (1) the range and variability of observations in the sample
and (2) the accuracy of the measurement of both the independent and the dependent
variable. These simple facts may already explain a great deal of differences of ex-
plained variance that are encountered between different studies. E.g., correlation
coefficients are larger, the larger the range of noise exposure is. Hence, a study that
e.g. investigates annoyance reactions in the 40-50 dB exposure range, will most
probably find a weaker association with annoyance (a smaller R-squared) than a
study whose exposure range is between 30 and 70 dB. Accuracy of exposure and
annoyance measurements play an important role too for achieving high explained
variance, as misclassification biases 'blur' the true exposure-response relationship,
i.e. lead to an underestimation of the strength of the relationship. In addition to these
more general effects, a range of context and scale as well as psychometric effects
such as type of interview (postal, telephone, face-to-face), survey context, season,
type of annoyance questions, question placement, and order of presentation of an-
swer alternatives as well as the measurement scale to assess annoyance are proba-
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bly relevant factors that account for the variability of explained variance one typically
encounters in socio-acoustic annoyance studies (Brink, 2013).

Aims and goals

In the present exercise we aim at, in a manner of speaking, taking inventory of
achieved levels of explained variance (with individual response data) in recent noise
annoyance surveys. Furthermore, we try to elucidate whether R-squared of expo-
sure-annoyance relationships is associated with (1) noise source, (2) exposure
measure (LDay, Lden, or Ldn), (3) type of interview (postal questionnaire, telephone
interview, face-to-face) and (4) the annoyance scale (4/5-point verbal vs. 11-point
numerical) that was used to measure annoyance responses.

METHODS

Selection of surveys

Potential surveys/studies to include in the exercise were identified by directly asking
colleagues in the research community to make available their original exposure-
annoyance data. In addition to these studies (that all appeared in the peer-reviewed
literature), we included a few of our own (not yet published) surveys and datasets.
Hence as can be seen, the present selection does not represent any systematic ap-
proach to data collection, but well serves the explorative purpose of the exercise. A
minimum sample size of 100 respondents was defined as a prerequisite, as well as
the application of either the 5-pt or 11-pt ICBEN/ISO (Fields et al., 2001) or similar
annoyance scales in the survey. Furthermore, only studies having made the effort of
rigid exposure assessment either by individual measurements according to estab-
lished protocols, or exposure calculations were included. Most of the datasets we
obtained included several exposure measures for sometimes more than one source
and/or responses on two annoyance scales (e.g. numerical and verbal scale). The
bootstrap resamples were based upon combinations of noise source, available expo-
sure measures (either Ldn, Lden, or LDay, but omitting LNight), and type of interview.
In longitudinal studies with two or more waves, each wave was treated as a stand-
alone case. Table 1 lists the surveys/studies (=41 cases) that were included in the
exercise (for the sake of space saving, the respective references are omitted).

Table 1: Studies in the current exercise

Study (Country) Sub-study,
Wave, or
Year

N Source Interview
Type

Scale Exposure
Measure

Median
Exposure
[dB(A)]

ALPNAP (AT) Road 1641 Railway telephone 5-point
verbal

Lden 59

ALPNAP (AT) Road 1641 Road (High-
way)

telephone 5-point
verbal

Lden 54

ALPNAP (AT) Road 1641 Road
(Main roads)

telephone 5-point
verbal

Lden 37

BBT (AT) Railway 1449 Railway facetoface 11-point
numerical

Lden 62

BBT (AT) Railway 1081 Railway telephone 5-point
verbal

Lden 55

BBT (AT) Road 1327 Road telephone 5-point
verbal

Lden 60
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BBT (AT) Road 1762 Road (High-
way)

facetoface 11-point
numerical

Lden 54

BBT (AT) Road 1991 Road
(Main Roads)

facetoface 11-point
numerical

Lden 53

Exasca (CH) 1st wave 1175 Road postal 11-point
numerical

LDay 62

Exasca (CH) 1st wave 1188 Road postal 5-point
verbal

LDay 62

Exasca (CH) 2nd wave 1186 Road postal 11-point
numerical

LDay 62

Exasca (CH) 2nd wave 1190 Road postal 5-point
verbal

LDay 62

Exasca (CH) 1st wave 1175 Road postal 11-point
numerical

Ldn 63

Exasca (CH) 1st wave 1188 Road postal 5-point
verbal

Ldn 63

Exasca (CH) 2nd wave 1186 Road postal 11-point
numerical

Ldn 63

Exasca (CH) 2nd wave 1190 Road postal 5-point
verbal

Ldn 63

Noise Study 2000 (CH) postal 2585 Aircraft postal 11-point
numerical

LDay 49

Noise Study 2000 (CH) postal 2585 Aircraft postal 11-point
numerical

Ldn 52

Noise Study 2000 (CH) telephone 509 Aircraft telephone 11-point
numerical

LDay 49

Noise Study 2000 (CH) telephone 509 Aircraft telephone 11-point
numerical

Ldn 52

Military Shooting (CH) Military
Shooting

1000 other telephone 5-point
verbal

Lae (1 year) 108

Military Shooting (CH) Military
Shooting

1000 other telephone 11-point
numerical

Lae (1 year) 108

MOSAiCH (CH) Rail 746 Railway facetoface 5-point
verbal

LDay 37

MOSAiCH (CH) Rail 746 Railway facetoface 5-point
verbal

Ldn 41

MOSAiCH (CH) Road 1086 Road facetoface 5-point
verbal

LDay 55

MOSAiCH (CH) Road 1086 Road facetoface 5-point
verbal

Ldn 56

Oslo Road Traffic (NO) Road 3081 Road postal 5-point
verbal

Lden 58

QUALIFEX (CH) Wave 2008 1337 Road
(+Tramway)

postal 4-point
verbal

LDay 47

QUALIFEX (CH) Wave 2009 1088 Road
(+Tramway)

postal 4-point
verbal

LDay 46

RDF (DE) RDF 2269 Aircraft facetoface 5-point
verbal

LDay 52

RDF (DE) RDF 2269 Aircraft facetoface 11-point
numerical

LDay 52

RDF (DE) RDF 2269 Aircraft facetoface 5-point
verbal

Ldn 54

RDF (DE) RDF 2269 Aircraft facetoface 11-point
numerical

Ldn 54

Japan Railway (JP) Railway 467 Railway postal 5-point
verbal

Ldn 57

Japan Railway (JP) Railway 467 Railway postal 11-point
numerical

Ldn 57

SAPALDIA (CH) SAPALDIA2 5282 Road facetoface 11-point
numerical

LDay 53

SAPALDIA (CH) SAPALDIA2 5282 Road facetoface 11-point
numerical

Ldn 53

Schiphol 2002 (NL) 2002 5753 Aircraft postal 11-point
numerical

Lden 52

Wind Turbines Nether-
lands (NL)

2007 708 other postal 5-point
verbal

Lden 34

Wind Turbines Sweden
00 (SE)

2000 341 other postal 5-point
verbal

Lden 34

Wind Turbines Sweden
05 (SE)

2005 754 other postal 5-point
verbal

Lden 33
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Statistical analysis

For the present inventory, we assume that the data samples in each row of Table 1
represent a random or randomly stratified sample from the population of interest in
each study or sub-study. To estimate explained variance of an exposure-annoyance
model from survey data, one has to account for the random variation of the parame-
ters of the regression model that describes the sample. We therefore used boot-
strapping to estimate the probability distribution of R-squared as it emerges from re-
gressing annoyance on exposure. The bootstrap method estimates the variability of a
model parameter from the variability of that parameter between subsamples, rather
than from parametric assumptions. Thus, while the bootstrap cannot estimate the
"true" R-squared value in the population, it assesses the probability distribution of R-
squared in the sample, based on calculating R-squared in many equally sized sub-
samples drawn from the original sample. As the resulting array of R-squared values
obeys the central limit theorem, R-squared is normally distributed and can exhaus-
tively be described by its mean and standard deviation. If the original study is an am-
ply powered true random sample from the population, the mean R-squared from the
bootstrap exercise is a straightforward estimate of the strengths of the exposure-
annoyance relationship in the population whereas the standard deviation is an esti-
mate of the confidence of the estimation. The larger the mean R-squared and the
smaller the standard deviation that results from the bootstrap is, the better and the
more confident the study was suited to describe the exposure-annoyance relation-
ship in the sample. A study with a small sample size but relatively high mean R-
squared has thus good potential to produce a more confident result if repeated with a
larger sample from the same population.

Applied procedure in the linear modeling context. From each of 41 survey sam-
ples (cp. Table 1) with size N, we sampled 10'000 subsamples of size N, by sampling
with replacement and modeled annoyance as a function of exposure using the sam-
ple() and lm() functions in R (R Development Core Team, 2012).

Applied procedure in the logistic modeling context. From each survey sample
with size N, we sampled 10'000 subsamples of size N, by sampling with replacement,
again using R's sample() function, and modeled the probability of high annoyance
(HA) with logistic regression using the glm() function. HA was defined as a response
on the upper 2 scale points in all verbal scales (except for the QUALIFEX study,
which used a 4 point scale, where the uppermost answer alternative was used), and
the upper 3 scale points (8, 9, 10) in 11-point numerical scales.
When analyzing data with logistic regression, a common procedure to e.g. model the
percentage of "highly annoyed", the ordinary least squares approach to goodness-of-
fit does not apply and hence, an equivalent statistic to R-squared does not exist.
Therefore, to roughly asses the degree of explained variance in the model building
process, the pseudo-R-squared statistic according to McKelvey and Zavoina (1975)
was calculated.

R-squared as a function of study characteristics. As a second step, to investigate
the role of study characteristics in the possible explanation of differences in R-
squared, we modeled R-squared as a function of the source, exposure meas-
ure/metric, type of interview, and type of annoyance scale, using a straightforward
GLM approach.
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RESULTS

Inventory of R-squared values (and their confidence)

Figure 1 gives account of the variability of the R-squared distributions in different
studies. The curves represent the normalized distributions of the bootstrap exercise’s
results of a few selected studies, sub-studies, or waves and demonstrate a consider-
able variability of R-squared values from below 0.05 up to 0.25, across studies. On
average, R-squared in this selection amounts to about 0.15. It is important to note
that all analyses are based on individual responses, and not on grouped data.
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Figure 1: Estimated distributions of R-squared values of linear regression models
in some selected study samples (11 out of 41) in the exercise

Effect of study characteristics on R-squared in the linear regression context

Due to the small number of studies/sub-studies and thus an essentially very small
number of statistical cases (N=41, cp. Table 1) that were available for analysis, it was
not possible to analyze differences of R-squared as explained by different study
characteristics in a truly sound statistical multivariate hierarchical model. The follow-
ing graphs show interaction plots with least squares (predicted) means, which were
obtained by a simple GLM approach, essentially regressing mean R-squared (from
the bootstrap) on noise source (Figure 2, left), exposure measure (Figure 2, right),
type of interview (Figure 3, left), and annoyance scale type (Figure 3, right) in sepa-
rate models. To control for the effect of exposure range, all four models included the
interquartile range of the exposure as a covariate.

The analyses revealed slight differences of R-squared that may be explained by
noise source, exposure measure, or type of interview. However, only the effect of
source turned out to be significant. Contrary to expectation, the type of annoyance
scale does not seem to affect R-squared.
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Figure 2: Least squares means of R-squared, explained by noise source (left)
and exposure measure (right)
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Figure 3: Least squares means of R-squared, explained by type of interview (left)
and annoyance scale type (right)

Effect of study characteristics on R-squared in the logistic regression context

The above analyses were repeated with logistic regression and the calculation of the
McKelvey and Zavoina pseudo-R-squared. By tendency, the logistic analysis yielded
similar results, that just slightly differed from the linear results.

DISCUSSION & CONCLUSIONS

Referring to the aforementioned criticism concerning the required level of explained
variance (as pointed out by Meyer, 2011), the exercise so far revealed that R-
squared values for individual data in the region of 0.1 - 0.2 are by no means atypi-
cally low, but rather represent the normal range of this parameter that can be ex-
pected in noise annoyance surveys. Given today's available technology of refined
exposure calculations and annoyance measurement, one would expect that R-
squared values be larger than those from studies carried out decades ago (cp. Job,
1988), basically due to reduced exposure misclassifications. Strikingly, this does not
seem to be the case.
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The exercise provides some support for the hypothesis, that Lden better reflects the
overall annoying properties of noise than Ldn, and Ldn better than LDay. Studies in-
vestigating railway noise effects in the present selection of data yielded higher R-
squared values. The type of annoyance rating scale does not seem to affect levels of
R-squared in a systematic way in the linear context, however, we found that models
for the prediction of the percentage HA fitted slightly better with verbal scales.

Surely, the potential mechanisms to explain these differences remain to be investi-
gated.

Limitations and outlook: The present exercise, that relied on a restricted number of
non-systematically collected data sources, is of course burdened with several limita-
tions, of which discussing even a few would go beyond the remaining available space
here. For any exercise of this kind, it is essential to have enough statistical cases (i.e.
studies in the present scope) in order to e.g. be able to control for cultural and lan-
guage differences of response behavior as well as for potential researcher effects.
The presented analyses document work in progress, further steps will hopefully en-
compass the collection of additional survey datasets to enhance overall power, the
analysis of R-squared differences also in grouped (aggregated) data instead of only
individual responses, and the necessary multilevel (hierarchical) approach to data
analysis.
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