Temporal processing disorders associated with styrene exposure

Ewa Zamyslowska-Szmytke^{1*}, Adrian Fuente², Mariola Sliwinska-Kowalska¹

- 1 Department of Audiology and Phoniatrics, Nofer Institute of Occupational Medicine, Lodz, Poland
- 2 Centre for Communication Disorders, The University of Hong Kong
- * corresponding author: e-mail: zamysewa@imp.lodz.pl

ICBEN

Due to known neurotoxic styrene properties it is likely that auditory processes/abilities such as auditory temporal processing may be affected. The aim of the study was to assess temporal processing abilities in styrene-exposed workers (67 subjects, mean age 40.3 \pm 8.7) versus non exposed control individuals (50 subjects, mean age 36.5 \pm 11.2). All participants presented either normal hearing or mild sensorineural hearing loss. The mean styrene exposure in the study group was 37.8 mg/m³ (S.D. 23.8). The following temporal processing tests were implemented: Gaps-in-noise (GIN), Frequency pattern test (FPT), Duration Pattern Test (DPT) using adequate sensation levels of stimuli.

Audiometric hearing thresholds were significantly worse in styrene-exposed subjects for most of the frequencies tested. Abnormal results for GIN test presented 14 (20.89 %) styrene-exposed individuals vs. 6 (12 %) controls; for FPT - 35 (52.23 %) styrene-exposed workers and 10 (20 %) unexposed controls; for DPT 50 (74.62 %) exposed subjects vs. 13 (26 %) control subjects. Exploring Chi-square test a significant association was found between styrene exposure and test results for FPT and DPT. Analysis of covariance (ANCOVA) was performed to compare the dependent variables between styrene-exposed and non-exposed subjects including age and average hearing thresholds in the analysis. Significant differences between styrene-exposed subjects were found for FPT (p=0.010), and DPT (p=0.000). Age showed to be significantly associated with FPT results only, hearing level with GIN scores only.

We conclude that styrene can be related to central auditory dysfunction characterised by a temporal processing disorders.

Disclaimer: The study was supported by the 6th European Framework Project under the Marie Curie Host Fellowship for the Transfer of Knowledge 'NoiseHear' (Contract No. MTKD-CT-2004-003137).