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INTRODUCTION 
Chronic exposure to toluene (Tol) can impair the central nervous system (Yama-
nouchi et al. 1995; Greenberg 1997). Tol shares many effects with nervous system 
depressant compounds such as anesthetics (Evans & Balster 1991). In the past, the 
neuroactivity of anesthetics and related compounds was thought to be attributed to 
their ability to perturb the plasma membrane (Engelke et al. 1992). Today, clear evi-
dence is emerging from the literature regarding actions of solvents on ion channels 
expressed in neurons. For instance, NMDA (Cruz et al. 1998), GABA (Krasowski & 
Harrison 2000) and Ach (Bale et al. 2002) receptors are important to nervous system 
and sensitive to Tol. Besides, Tol alters the function of several voltage-dependent ion 
channels including voltage-dependent Ca2+ channels (VDCCs) (Tillar et al. 2002; 
Shafer et al. 2005). Chronic exposure to Tol can impair the inner ear as well (Odkvist 
et al. 1982; Rybak 1986). The notion of ototoxicity stemming from organic com-
pounds is important for people exposed at workplace (Morata & Campo 2001). Cer-
tain aromatic solvents are ototoxic and can even worsen the effects of noise (Lataye 
& Campo 1997; Lataye et al. 2000; Brandt-Lassen et al. 2000; Cappaert et al. 2001; 
Sliwinska-Kowalska et al. 2003; Chang et al. 2006).  
The studies carried out in the rat showed that a co-exposure to noise and aromatic 
solvent can have synergistic adverse effects on hearing. The fair assumption pro-
posed to explain these effects was that the solvents could weaken the outer hair cell 
(OHC) membranes and thereby increase their vulnerability to noise. But, in recent 
investigations performed with rats, it has been shown that Tol can inhibit Ach recep-
tors (Lataye et al. 2007) and cancel the protective effect of the middle-ear reflex 
(MER) (Campo et al. 2007). 
In the rat, motoneurons involved in the MER are mediated by Ach (Liu et al. 1998; 
Zaninetti et al. 1999), which is also the major neurotransmitter involved (1) in the 
synaptic network within the facial and trigeminal nuclei or integrator centers (Lee et 
al. 2006) and (2) in neuromuscular junctions connected to the MER muscles. In the 
nervous system, Ach exocytosis is mainly activated by P/Q-type Ca2+ channels 
(Wright & Angus 1996; Day et al. 1997) and to a lesser extent by N-type Ca2+ chan-
nels (Hamilton & Smith 1992; Rossoni et al. 1994). In contrast, the L-type Ca2+ chan-
nels are mainly dedicated to muscular contraction (Catterall et al. 1988; Patterson et 
al. 1995). There is therefore a dominating role of P/Q- and N-type Ca2+ channels at 
the level of motoneurons and a dominating role of L-type Ca2+ channels in muscles.  
If Tol can inhibit the MER, the cellular sites of its action were still not completely elu-
cidated. Could Tol interact with VDCCs in motoneurons, integrator centers or mus-
cles? To better understand the Tol action at the level of the MER arc, two specific 
VDCCs blockers were used in the present study:  

• the ω-conotoxin MVIIC (ω-Ctx), which is the only pharmacological tool inhibit-
ing both P/Q- and N-type Ca2+ channels (Hillyard et al. 1992; McDonough et al. 
1996) expressed in neurons,  

• the verapamil, which inhibits the L-type Ca2+ channels, which are mainly ex-
pressed in muscular fibers (Almers et al. 1985).  
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These blockers have been administered in the rat by intra-carotidal injections to 
study their effects on the CMP, which is a good electrophysiological tool to record (1) 
the electro-activity of the OHCs (Withnell 2001) and (2) the trigger of the MER 
(Dancer and Franke 1980; Campo et al. 2007). The aim of this investigation was to 
study the prevailing action of Tol on the different elements of the MER arc. In this 
purpose, the effects of VDCC antagonists were compared to those of Tol adminis-
trated in the same experimental conditions.  

METHODS 
Adult rats were used throughout this investigation. Anesthesia was induced by i.p. 
injection of ketamine (50 mg/kg). Then, a platinum electrode was inserted in the bulla 
and placed on the round window, whereas the ground electrode was placed over the 
olfactory bulb. This technique allows auditory-evoked potentials to be recorded from 
the cochlea. A circular custom-made catheter was fitted into the carotid connected to 
the operated ear for administrating the tested substances. 
The acoustic stimulus was a 2.6-s burst emitted every 12 s, its spectrum was a nar-
row BN centered at 4 kHz emitted at 85 dB SPL. The CMP (RMS) was amplified 
5000X and filtered from 2 to 8 kHz.  
Three concentrations of Tol (58.4, 116.2 and 229.5 mM) were tested with different 
groups of rats (n = 5).  
A dose-response study was carried out for the two VDCC blockers:  

• ω-Conotoxin MVIIC (ω-Ctx) (CAS 147794238), a snail neurotoxin which blocks 
both P/Q- and N-type VDCCs. Three concentrations of ω-Ctx: 83.5, 145.2 and 
211.4 µM, were tested with different groups of rats (n = 2).  

• Verapamil (CAS 152114), a drug which blocks L-type VDCCs. The effects of 
three increasing concentrations of blocker: 312.5, 625 and 1250 µM, were 
evaluated in different groups of rats (n = 3). 

RESULTS 
In each figure, curve represents the data obtained with one animal representative of 
the group. 
Toluene effects on CMP 
Figure 1 displays the CMP obtained with 85-dB SPL noise-stimulated rats before, 
during and after a 100-µL injection of Tol at 58.4, 116.2 and 229.5 mM. The Tol injec-
tions of 116.2 and 229.5 mM caused rapid and transient rises in CMP amplitude 
called P component. The mean amplitudes obtained with 0, 58.4, 116.2 and 229.5 
mM were 0.0 ± 0.4 dB, 0.4 ± 0.9 dB, 4.3 ± 1.5 dB and 4.1 ± 1.7 dB respectively. The 
lowest concentration, 116.2 mM, causing a significant (K = 13.59; p = 0.004) increase 
in CMP was chosen as reference concentration in this experimental context. 
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Figure 1: CMP (RMS) vs. Tol concentrations. 100-µl bolus of Tol were injected into the carotid. The 
acoustic stimulation was a 4 kHz-BN emitted at 85 dB SPL. 

ω-Ctx effects on CMP 
Figure 2 depicts the CMP obtained with 85-dB SPL noise-stimulated rats before, dur-
ing and after a 100-µL injection of ω-Ctx at 83.5, 145.2 and 211.4 µM. Due to the ex-
pensive price along with a heavy administrative procedure to get the toxin from the 
supplier, we could afford only 2 experiments per concentration. Hopefully, the results 
were clear enough to draw conclusions. The injections of 145.2 and 211.4-µM of ω-
Ctx provoked rapid and transient rises in CMP. The mean amplitudes obtained with 
0, 83.5, 145.2 and 211.4 µM were 0.0 ± 0.4 dB, 0.3 ± 0.3 dB, 3.8 ± 0.8 dB and 7.3 ± 
0.3 dB respectively. ω-Ctx-induced CMP rises were clearly concentration–
dependent. 

Verapamil effects on the CMP 
Figure 3 illustrates the CMP obtained with 85-dB SPL noise-stimulated rats before, 
during and after a 100-µL injection of verapamil at 312.5, 625 and 1250 µM. The 
blocker induced rapid and transient CMP rises which the amplitude increases as a 
function of concentration. The mean amplitudes obtained with 0, 312.5, 625 and 
1250 µM were 0.0 ± 0.4 dB, 1.4 ± 0.5 dB, 3.4 ± 0.7 dB and 4.1 ± 1.2 dB respectively. 
The verapamil effects on CMP were concentration-dependent (K=11.60; p=0.009).  
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Figure 2: CMP (RMS) vs. ω-conotoxin concentration. 100-µl bolus of ω-Ctx were injected into the 
carotid. The acoustic stimulation was a 4 kHz-BN emitted at 85 dB SPL.  
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Figure 3: CMP (RMS) vs verapamil concentrations. 100-µL bolus of verapamil were injected into the 
carotid. The acoustic stimulation was a 4 kHz-BN emitted at 85 dB SPL. 

Tol vs. VDCC blockers  
Figure 4 allows the CMP obtained with blockers to be compared with that obtained 
with Tol. 145.2 µM of ω-Ctx and 1250 µM of verapamil were the required concentra-
tions to induce a CMP change similar to that obtained with 116.2-mM of Tol (~4 dB). 
There were large differences of concentrations between the chemicals to induce the 
same amplitude of the P component: (Tol/ω-Ctx=800), (Tol/verapamil=93), (verapa-
mil/ ω-Ctx=9). In the same way, there were also large differences of the area under 
curve (AUC) between the CMP obtained with Tol and blockers (Figures 1-3). These 
differences between AUC are well illustrated in Figure 4. For instance, the AUC ratios 
are (Tol/ω-Ctx=1.4), (Tol/verapamil=3.6), (verapamil/ω-Ctx=5.2). Therefore, verapa-
mil had a long-lasting effect with respect to those of Tol and ω-Ctx. 
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Figure 4: CMP (RMS) obtained with VDCC blockers and Tol. 100-µL bolus were injected into the ca-
rotid. The acoustic stimulation was a 4 kHz-BN emitted at 85 dB SPL. 

CONCLUSIONS 
Lataye et al. (2007) demonstrated in rats that Tol could induce a CMP rise by its anti-
cholinergic-like effects and thereby confirmed Bale’s results (Bale et al. 2002, 2005) 
obtained with in vitro preparations. Later on, Campo et al. (2007) demonstrated that 
this Tol-induced CMP rise corresponded to an inhibition to the MER. Unfortunately, 
the authors did not go further in their investigations and did not test others potential 
molecular targets for Tol. In the present in vivo study, ω-Ctx- and verapamil- induced 
CMPs were compared to that induced by Tol in order to (1) confirm the VDCCs as 
potential molecular targets, (2) localize the cellular sites perturbed by the solvent in 
the MER arc. As expected, the Tol dose-response study (Figure 1) showed a re-
versible MER inhibition from 116.2mM of Tol. Figures 2 and 3 show the reversible 
inhibition of the MER induced by neuronal and muscular VDCC blockers.  
By comparing the curve patterns having the same amplitude (~4 dB), the ω-Ctx sen-
sitivity was 9-fold higher with respect to that of verapamil (145.2, 1250 µM). The re-
versibility and the concentration-dependent responses were comparable with those 
previously obtained with Ach receptor antagonists. Figure 4 emphasizes the differ-
ence of concentration needed for Tol (116.2 mM) and for VDCC blockers (145.2-µM 
ω-Ctx; 1250-µm verapamil) to induce a 4-dB response. In our opinion, the concentra-
tion cannot be considered as a pertinent parameter because of the vehicle nature. 
Indeed, Tol needed a lipophilic vehicle (Intralipid) to be dissolved, but the efficiency 
of verapamil was deeply depressed by it (Tebbutt et al. 2006). Therefore, a saline 
solution was chosen as vehicle for both blockers. Because of this experimental bias, 
it seemed unrealistic to compare the concentrations to evaluate the relative affinity of 
Tol with regard to that of blockers. Indeed, the most striking drawback of Intralipid is 
that it can confine a part of the solvent, keeping the free-available part of the solvent 
low. Consequently, the Tol dose at the target structure is likely overestimated with 
respect to that inside the syringe. Actually, the most reliable approach was to com-
pare the patterns of the responses having the same amplitude regardless of the dif-
ference of concentrations between solvent and blockers. 
By comparing the patterns of the Tol-induced inhibition with those induced by 145.2-
µM ω-Ctx and 1250-µM verapamil (Figure 4), it clearly appeared that the verapamil-
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induced CMP lasted longer than those induced by Tol and ω-Ctx. Such a difference 
could be explained by the nature (muscular vs. neuronal) of the targets inhibited by 
the VDCC blockers. Since the verapamil inhibits mainly the muscular L-type VDCCs, 
it is likely that the duration required for reestablishing a normal muscular contraction 
was larger than that required for restoring a normal nervous conduction.  
In case of a neuronal inhibition (Figure 2), the middle-ear muscles were forced in rest 
although functional. In fact, the nervous control of the middle-ear muscles was tem-
porary interrupted but they kept the ability of contracting.  
In case of verapamil injection (Figure 3), the L-type VDCCs were inhibited in the 
muscular T-tubules (invaginations) of the plasma membrane. T-tubules are the major 
sites for the coupling of excitation/contraction, which is the process whereby the 
spreading depolarization is converted into force production by muscle fibers. The L-
type VDCCs are activated in response to nervous stimulation and this activation 
causes a mechanical interaction between L-type VDCCs and Ca2+-release channels 
located on the adjacent sarcoplasmic reticulum membrane. This mechanical interac-
tion is critical to trigger a proper skeletal muscle contraction (Tanabe et al. 1988; Na-
kai et al. 1998; Endo 2006). This all process lasted probably longer than the simple 
reestablishment of the nervous conduction.  
Whatever the reasons on the origin of the different patterns recorded with both 
blockers, it appeared that Tol and ω-Ctx curves had a similar pattern (Figure 4). 
Therefore, Tol would act rather like a neuronal VDCC blocker, as suggested by Tillar 
et al. (2002) and Shafer et al. (2005) with in vitro experiments. In the present study, 
the in vivo findings confirmed the in vitro data and proved that VDCCs represent po-
tential sensitive targets for Tol. In addition, since N-, P/Q-type channels constitute the 
major component of the Ca2+ channels expressed in the neuronal compartment of the 
MER arc (Plant et al. 1998; Hsiao et al. 2005), it seems therefore reasonable to claim 
that Tol can block the reflex by inhibiting the neuronal VDCCs at the level of its mo-
toneurons and integrator centers. Inhibition of the transmitter receptors and associ-
ated Ca2+ channels would constitute the central mechanism responsible for the syn-
ergistic adverse effects on hearing of a co-exposure to noise and Tol: a higher 
acoustic energy penetrating into the cochlea would make the noise exposure more 
damaging. 
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